{ "cells": [ { "cell_type": "markdown", "id": "bdb48610", "metadata": {}, "source": [ "# EMRI Waveforms in Time and Frequency Domain\n", "\n", "In this tutorial, we demonstrate how to use the Fast EMRI Waveform package to produce waveforms in the time domain (TD) as described in [arXiv 2104.04582](https://arxiv.org/abs/2104.04582) and in the frequency domain (FD) as described in [arXiv 2307.12585](https://arxiv.org/abs/2307.12585). We explore the representation of EMRI waveforms in both domains using a reference source. We compare the TD and FD waveforms using mismatch and estimate the waveform generation speed. Additionally, we explore the impact of spin and eccentricity on the waveform signal-to-noise ratio. Finally, we demonstrate mass invariance and downsampling using the Frequency Domain.\n", "\n", "Created by Lorenzo Speri" ] }, { "cell_type": "code", "execution_count": 1, "id": "348daf55", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "f18fdcf5a02145b78d58d57e28add56a", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "0a65d6bc43c140dfaf7c7545a93347ae", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "aad1518931fe44ea8d94eaff773db924", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "31b286bcb05c491aa60592e17c05d8b9", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "efc64a9c880c4c159ea1a11e29bf12c4", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import time\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from few.waveform import GenerateEMRIWaveform\n", "from few.utils.constants import MTSUN_SI\n", "from few.utils.utility import get_p_at_t, get_fundamental_frequencies\n", "from few.utils.fdutils import GetFDWaveformFromFD, GetFDWaveformFromTD\n", "from few.trajectory.inspiral import EMRIInspiral\n", "from few.trajectory.ode.flux import KerrEccEqFlux\n", "\n", "from scipy.interpolate import CubicSpline\n", "\n", "traj_module = EMRIInspiral(func=KerrEccEqFlux)\n", "\n", "# import ASD\n", "data = np.loadtxt(\"./files/LPA.txt\", dtype=np.float64, skiprows=1)\n", "data[:, 1] = data[:, 1] ** 2\n", "# define PSD function\n", "get_sensitivity = CubicSpline(*data.T)\n", "\n", "\n", "# define inner product eq 3 of https://www.nature.com/articles/s41550-022-01849-y\n", "def inner_product(x, y, psd):\n", " return 4 * np.real(np.sum(np.conj(x) * y / psd))\n", "\n", "\n", "# non uniform array of frequencies\n", "def get_frequency_array(fmin, fmax, deltaf):\n", " p_freq = np.append(0.0, np.arange(fmin, fmax, step=deltaf))\n", " freq = np.hstack((-p_freq[::-1][:-1], p_freq))\n", " return freq" ] }, { "cell_type": "code", "execution_count": 2, "id": "15c08219-56eb-430d-b19e-e012b5c59cc7", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "2ebb603a7dfa4b32a73d5f10e871bd66", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize waveform generators\n", "# frequency domain\n", "few_gen = GenerateEMRIWaveform(\n", " \"FastKerrEccentricEquatorialFlux\",\n", " sum_kwargs=dict(pad_output=True, output_type=\"fd\", odd_len=True),\n", " return_list=True,\n", ")\n", "\n", "# time domain\n", "td_gen = GenerateEMRIWaveform(\n", " \"FastKerrEccentricEquatorialFlux\",\n", " sum_kwargs=dict(pad_output=True, odd_len=True),\n", " return_list=True,\n", ")" ] }, { "cell_type": "code", "execution_count": 3, "id": "a2779c4c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "New p0: 8.550426200258785\n" ] } ], "source": [ "# define the injection parameters\n", "M = 0.5e6 # central object mass\n", "a = 0.9 # will be ignored in Schwarzschild waveform\n", "mu = 10.0 # secondary object mass\n", "p0 = 12.0 # initial semi-latus rectum\n", "e0 = 0.1 # eccentricity\n", "\n", "x0 = 1.0 # will be ignored in Schwarzschild waveform\n", "qK = np.pi / 3 # polar spin angle\n", "phiK = np.pi / 3 # azimuthal viewing angle\n", "qS = np.pi / 3 # polar sky angle\n", "phiS = np.pi / 3 # azimuthal viewing angle\n", "dist = 1.0 # distance\n", "# initial phases\n", "Phi_phi0 = np.pi / 3\n", "Phi_theta0 = 0.0\n", "Phi_r0 = np.pi / 3\n", "\n", "Tobs = 0.5 # observation time, if the inspiral is shorter, the it will be zero padded\n", "dt = 10.0 # time interval\n", "eps = 1e-4 # mode content percentage\n", "\n", "waveform_kwargs = {\n", " \"T\": Tobs,\n", " \"dt\": dt,\n", " \"eps\": eps,\n", "}\n", "\n", "# get the initial p0 given a certain observation\n", "p0 = get_p_at_t(\n", " traj_module,\n", " Tobs * 0.999,\n", " [M, mu, a, e0, 1.0],\n", " index_of_p=3,\n", " index_of_a=2,\n", " index_of_e=4,\n", " index_of_x=5,\n", " traj_kwargs={},\n", " xtol=2e-12,\n", " rtol=8.881784197001252e-16,\n", " bounds=None,\n", ")\n", "print(\"New p0: \", p0)\n", "\n", "emri_injection_params = [\n", " M,\n", " mu,\n", " a,\n", " p0,\n", " e0,\n", " x0,\n", " dist,\n", " qS,\n", " phiS,\n", " qK,\n", " phiK,\n", " Phi_phi0,\n", " Phi_theta0,\n", " Phi_r0,\n", "]" ] }, { "cell_type": "markdown", "id": "54f0a0e4", "metadata": {}, "source": [ "## Comparison against the Time Domain Waveforms" ] }, { "cell_type": "code", "execution_count": 4, "id": "1274f17f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Time taken to generate the TD signal: 0.5409879684448242 seconds\n" ] } ], "source": [ "# create TD signal\n", "data_channels_td = td_gen(*emri_injection_params, **waveform_kwargs)\n", "\n", "# time the generation of the TD signal\n", "start = time.time()\n", "data_channels_td = td_gen(*emri_injection_params, **waveform_kwargs)\n", "end = time.time()\n", "print(\"Time taken to generate the TD signal: \", end - start, \"seconds\")\n", "\n", "# take the FFT of the plus polarization and shift it\n", "fft_TD = np.fft.fftshift(np.fft.fft(data_channels_td[0])) * dt\n", "freq = np.fft.fftshift(np.fft.fftfreq(len(data_channels_td[0]), dt))\n", "\n", "# define the positive frequencies\n", "positive_frequency_mask = freq >= 0.0" ] }, { "cell_type": "code", "execution_count": 5, "id": "d85e84b8", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_86035/1463989769.py:8: UserWarning: No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.\n", " plt.legend()\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAG3CAYAAAD8eoLkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbyZJREFUeJzt3Xl4VNX9P/D3LMlkT0hCNkgI+xZIIJCAgiwGERBFiqWLslVsXVAbsQUXFKvF7w/a0ipKS2vRWivSKraiiEQxyirBCcgmS4CwJAFCtkkySWbm98edGWYmM5l97izv1/PMQ+beO/eegSF553POPUei0+l0ICIiIiKfkordACIiIqJQxBBGREREJAKGMCIiIiIRMIQRERERiYAhjIiIiEgEDGFEREREImAIIyIiIhKBXOwGBCutVotLly4hNjYWEolE7OYQERGRA3Q6HRobG5GRkQGp1Lu1KoYwL7l06RIyMzPFbgYRERG5oLKyEj179vTqNRjCvCQ2NhaA8I8YFxcncmuIiIjIEQ0NDcjMzDT+HPcmhjAvMXRBxsXFMYQREREFGF8MJQrpgfmVlZWYOHEihgwZguHDh2Pz5s2djmlubkavXr2wdOlSEVpIREREwSqkK2FyuRxr165FXl4eqqqqkJ+fj+nTpyM6Otp4zEsvvYQxY8aI2EoiIiIKRiFdCUtPT0deXh4AIC0tDcnJyaitrTXuP3nyJI4fP45p06aJ1EIiIiIKVn4dwkpLSzFz5kxkZGRAIpFgy5YtnY5Zt24dsrOzERERgcLCQuzfv9+la5WVlUGj0Zjd0bh06VKsWrXK1eYTERGRj2k0GrS2ttp8aDQasZto5NfdkSqVCrm5uVi0aBFmz57daf+mTZtQXFyM9evXo7CwEGvXrsXUqVNx4sQJpKSkAADy8vLQ0dHR6bXbt29HRkYGAKC2thbz5s3Dhg0bjPs//PBDDBgwAAMGDMDu3bu99A6JiIjIE3Q6HaqqqlBXV2f32ISEBKSlpYk+j6dEp9PpRG2BgyQSCT744APMmjXLuK2wsBCjR4/Gq6++CkCYIDUzMxNLlizBsmXLHDqvWq3GlClTsHjxYtx3333G7cuXL8fbb78NmUyGpqYmtLe344knnsCKFStsnketVhufG25xra+v592RREREXnb58mXU1dUhJSUFUVFRVgOWTqdDc3MzampqkJCQgPT09E7HNDQ0ID4+3ic/v/26O7IrbW1tKCsrQ1FRkXGbVCpFUVER9uzZ49A5dDodFixYgMmTJ5sFMABYtWoVKisrcfbsWaxZswaLFy+2GcAMx8fHxxsfnKiViIjINzQajTGAJSUlITIyEhEREZ0ekZGRSEpKQkpKCurq6kTvmgzYEHb16lVoNBqkpqaabU9NTUVVVZVD59i1axc2bdqELVu2IC8vD3l5eTh8+LBL7Vm+fDnq6+uNj8rKSpfOQ0RERM5pb28HAERFRTl0vOE4w+vE4tdjwrxt3Lhx0Gq1do9bsGCB3WMUCgUUCoUHWkVERESucHSMl9hjwQwCthKWnJwMmUyG6upqs+3V1dVIS0sTqVVEREREjgnYEBYeHo78/HyUlJQYt2m1WpSUlGDs2LEitoyIiIjIPr/ujmxqasKpU6eMzysqKqBUKpGYmIisrCwUFxdj/vz5GDVqFAoKCrB27VqoVCosXLhQxFYTERER2efXIezAgQOYNGmS8XlxcTEAYP78+di4cSPmzp2LK1euYMWKFaiqqkJeXh62bdvWabA+ERERkb8JmHnCAo0v5xkhIiIKZa2traioqECvXr0cukOyubkZ586dQ+/evREREWG2z5c/v/26EkZERERkT3h4OKRSKS5duoTu3bsjPDzc5mStbW1tuHLlCqRSKcLDw0Vo7Q0MYURERBTQpFIpevfujcuXL+PSpUt2j4+KikJWVhakUnHvT2QIIyIiooAXHh6OrKwsdHR0dDkTvkwmg1wu94u5whjCiIiIKChIJBKEhYUhLCxM7KY4JGDnCSMiIiIKZAxhRERERCJgCCMiIiISAUMYERERkQgYwoiIiIhEwBBGREREJAKGMCIiIiIRMIQRERERiYAhjIiIiEgEDGFEREREImAIIyIiIhIBQxgRERGRCBjCiIiIiETAEEZEREQkAoYwIiIiIhEwhBERERGJgCGMiIiISAQMYUREREQiYAgjIiIiEgFDGBEREZEIGMKIiIiIRMAQRkRERCQChjAiIiIiETCEEREREYmAIYyIiIhIBAxhRERERCJgCCMiIiISAUMYERERkQhCOoRVVlZi4sSJGDJkCIYPH47Nmzcb9504cQJ5eXnGR2RkJLZs2SJeY4mIiCioSHQ6nU7sRojl8uXLqK6uRl5eHqqqqpCfn4/vv/8e0dHRZsc1NTUhOzsb586d67TPloaGBsTHx6O+vh5xcXHeaD4RERF5mC9/fsu9enY/l56ejvT0dABAWloakpOTUVtb2ylo/fe//8Wtt97qcAAjIiIissevuyNLS0sxc+ZMZGRkQCKRWO0OXLduHbKzsxEREYHCwkLs37/fpWuVlZVBo9EgMzOz07733nsPc+fOdem8RERERNb4dSVMpVIhNzcXixYtwuzZszvt37RpE4qLi7F+/XoUFhZi7dq1mDp1Kk6cOIGUlBQAQF5eHjo6Ojq9dvv27cjIyAAA1NbWYt68ediwYUOn4xoaGrB79268++67XbZVrVZDrVabvY6IiIjIloAZEyaRSPDBBx9g1qxZxm2FhYUYPXo0Xn31VQCAVqtFZmYmlixZgmXLljl0XrVajSlTpmDx4sW47777Ou3/xz/+gU8//RRvv/12l+d5/vnnsXLlyk7bOSaMiIgocPhyTJhfd0d2pa2tDWVlZSgqKjJuk0qlKCoqwp49exw6h06nw4IFCzB58mSrAQxwvCty+fLlqK+vNz4qKysdeyNEREQUkgI2hF29ehUajQapqalm21NTU1FVVeXQOXbt2oVNmzZhy5YtxqkoDh8+bNxfX1+P/fv3Y+rUqXbPpVAoEBcXZ/YgIiIissWvx4R527hx46DVam3uj4+PR3V1tQ9bRERERKEiYCthycnJkMlknUJSdXU10tLSRGoVERERkWMCNoSFh4cjPz8fJSUlxm1arRYlJSUYO3asiC0jIiIiss+vuyObmppw6tQp4/OKigoolUokJiYiKysLxcXFmD9/PkaNGoWCggKsXbsWKpUKCxcuFLHVRERERPb5dQg7cOAAJk2aZHxeXFwMAJg/fz42btyIuXPn4sqVK1ixYgWqqqqQl5eHbdu2dRqsT0RERORvAmaesEDDtSOJiIgCD+cJIyIiIgpyDGFEREREImAIIyIiIhIBQxgRERGRCBjCiIiIiETAEEZEREQkAoYwIiIiIhEwhBERERGJgCGMiIiISAQMYUREREQiYAgjIiIiEgFDGBEREZEIGMKIiIiIRMAQRkRERCQChjAiIiIiETCEEREREYmAIYyIiIhIBAxhRERERCJgCCMiIiISAUMYERERkQgYwoiIiIhEwBBGREREJAKGMCIiIiIRMIQRERERiYAhjIiIiEgEDGFEREREImAIIyIiIhIBQxgRERGRCBjCiIiIiETAEEZEREQkAoYwIiIiIhGEdAirq6vDqFGjkJeXh5ycHGzYsMFs/0cffYSBAweif//++Otf/ypSK4mIiCgYSXQ6nU7sRohFo9FArVYjKioKKpUKOTk5OHDgAJKSktDR0YEhQ4bgiy++QHx8PPLz87F7924kJSU5dO6GhgbEx8ejvr4ecXFxXn4nRERE5Am+/Pkd0pUwmUyGqKgoAIBarYZOp4Mhk+7fvx9Dhw5Fjx49EBMTg2nTpmH79u1iNpeIiIiCiF+HsNLSUsycORMZGRmQSCTYsmVLp2PWrVuH7OxsREREoLCwEPv373fqGnV1dcjNzUXPnj3x5JNPIjk5GQBw6dIl9OjRw3hcjx49cPHiRbfeDxEREZGBX4cwlUqF3NxcrFu3zur+TZs2obi4GM899xwOHjyI3NxcTJ06FTU1NcZjDOO9LB+XLl0CACQkJKC8vBwVFRV45513UF1d7ZP3RkRERKFNLnYDujJt2jRMmzbN5v7f//73WLx4MRYuXAgAWL9+PbZu3Yo33ngDy5YtAwAolUqHrpWamorc3Fx89dVXmDNnDjIyMswqXxcvXkRBQYHN16vVaqjVauPzhoYGh65LREREocmvK2FdaWtrQ1lZGYqKiozbpFIpioqKsGfPHofOUV1djcbGRgBAfX09SktLMXDgQABAQUEBvvvuO1y8eBFNTU345JNPMHXqVJvnWrVqFeLj442PzMxMN94dERERBTu/roR15erVq9BoNEhNTTXbnpqaiuPHjzt0jnPnzuGBBx4wDshfsmQJhg0bBgCQy+X43e9+h0mTJkGr1eJXv/pVl3dGLl++HMXFxcbnDQ0NDGJERERkU8CGME8oKCjosrvyzjvvxJ133unQuRQKBRQKhYdaRkRERMEuYLsjk5OTIZPJOg2kr66uRlpamkitIiIiInJMwIaw8PBw5Ofno6SkxLhNq9WipKQEY8eOFbFlRERERPb5dXdkU1MTTp06ZXxeUVEBpVKJxMREZGVlobi4GPPnz8eoUaNQUFCAtWvXQqVSGe+WJCIiIvJXfh3CDhw4gEmTJhmfGwa+z58/Hxs3bsTcuXNx5coVrFixAlVVVcjLy8O2bds6DdYnIiIi8jchvXakN3HtSCIiosDDtSOJiIiIghxDGBEREZEIGMKIiIiIRMAQRkRERCQChjAiIiIiETCEEREREYmAIYyIiIhIBAxhRERERCJgCCMiIiISAUMYERERkQgYwoiIiIhEwBBGREREJAKGMCIiIiIRMIQRERERiYAhjIiIiEgEDGFEREREImAIIyIiIhIBQxgRERGRCBjCiIiIiETAEEZEREQkAoYwIiIiIhEwhBERERGJgCGMiIiISAQMYUREREQiYAgjIiIiEgFDGBEREZEIGMKIiIiIRMAQ5m2fPQeorordCiIiIvIzDGHeduBvwB/zgC9XA20qsVtDREREfoIhzNtSc4C2RuCLF4Uw9s1fAU272K0iIiIikTGEeduCj4Ef/A3olg2oaoCtTwDrCoEjHwA6nditIyIiIpEwhHmbVAoMmwM8/A0wbTUQlQzUngY2LwA2TAbOfCl2C4mIiEgEIR3C6urqMGrUKOTl5SEnJwcbNmxwaJ9L5OFA4QPAY0pgwjIgLBq4dBB4607grbuAi2XunZ+IiIgCikSnC90+MY1GA7VajaioKKhUKuTk5ODAgQNISkrqcp8jGhoaEB8fj/r6esTFxXU+oKkGKF0DHHgD0OrHiA2+E5j8DNB9oAffJRERETnK7s9vDwrpSphMJkNUVBQAQK1WQ6fTwZBJu9rnETEpwPT/Byw5AOT+GIAEOPZf4LUxwJaHgbpKz12LiIiI/I5fh7DS0lLMnDkTGRkZkEgk2LJlS6dj1q1bh+zsbERERKCwsBD79+936hp1dXXIzc1Fz5498eSTTyI5OdmhfR7TLRu4ez3w4G5g4AxApwWUbwOvjAS2LeccY0REREHKr0OYSqVCbm4u1q1bZ3X/pk2bUFxcjOeeew4HDx5Ebm4upk6dipqaGuMxhjFdlo9Lly4BABISElBeXo6Kigq88847qK6uNr62q32W1Go1GhoazB5OSR0C/Pgd4Gc7gOzxgKYN2Psa8Mdc4ItVQKuT5yMiIiK/FjBjwiQSCT744APMmjXLuK2wsBCjR4/Gq6++CgDQarXIzMzEkiVLsGzZMqev8dBDD2Hy5MmYM2eOU/sA4Pnnn8fKlSs7bXepT1mnA05/DpS8AFxWCtsiE4HxTwCj7wfCIpw7HxERETmEY8Ic0NbWhrKyMhQVFRm3SaVSFBUVYc+ePQ6do7q6Go2NjQCEsFRaWoqBAwfa3WfN8uXLUV9fb3xUVroxpksiAfrdCjywE7jnTSCpP9BSC2x/WuimPPgWoOlw/fxEREQkOrnYDXDV1atXodFokJqaarY9NTUVx48fd+gc586dwwMPPGAcdL9kyRIMGzbM7j5rFAoFFAqF62/IGokEGDoLGHQHUP4OsPNloOEi8N8lwK4/CXdSDrlLOI6IiIgCSsCGME8oKCiAUql0ep/PyeTAyHnAsB8Ka1F+9Tvg2klg83wgPQ+4dQXQdzLDGBERUQAJ2O7I5ORkyGSyToPlq6urkZaWJlKrvCwsAhj7MPCoUpjwNTxGGDP29mzgzZlA5Tdit5CIiIgcFLAhLDw8HPn5+SgpKTFu02q1KCkpwdixY0VsmQ9ExAGTlgOPlQNjHgZk4cDZr4C/FQH/+glQc0zsFhIREZEdfh3CmpqaoFQqjd2CFRUVUCqVOH/+PACguLgYGzZswJtvvoljx47hwQcfhEqlwsKFC0VstQ9FJwO3/xZYchAYcS8gkQIntgKvjQU++AVw/azYLSQiIiIbnJ6ioqWlBbW1tejRo4fZ9iNHjmDo0KEebdzOnTsxadKkTtvnz5+PjRs3AgBeffVVrF69GlVVVcjLy8Of/vQnFBYWerQdrvDlLa5GV74HvngROPqh8FyqH0s2fikQ36Pr1xIREZFPf347FcL+/e9/4/HHH0dycjK0Wi02bNhgDDwjR47EwYMHvdbQQCNKCDO4eBD4/EXgtL6rVqYARi0CxhcLyyURERGRVX47T9iLL76IsrIyKJVK/P3vf8fPfvYzvPPOOwDg2XUVyT09RgL3vQ8s/ATodTOgUQP7Xhdm3//sOaC5VuwWEhERhTynpqhob283zsuVn5+P0tJS3H333Th16hQknB7B//S6CViwFTizU6iMXTwA7FoLfPM34S7LsQ8BEfFit5KIiCgkOVUJS0lJwaFDh4zPExMT8dlnn+HYsWNm28mPSCRA30nA/TuAn7wHpA0D2hqBL18G1g4Hvvo90KYSu5VEREQhx6kxYRcuXIBcLrc6D9euXbtw8803e7RxgUzUMWFd0WqBY/8Fdq4CruhXFojuDowrFsaNcV1KIiIKYX47MJ8c57chzECrAb77D/DFb4HrFcK22AzglieAEfMAebi47SMiq9QdGuw4WoOb+iahWzT/nxJ5GkNYEPD7EGagaQfK/wV8+f+Aev2i4wlZwIRfA8N/JCyZRER+47F3v8WHyksAgLMvzxC5NUTBx+9DWO/evV0aiP/444/j0Ucfdfp1gShgQphBhxo4+BZQuhpo0i8FldgXmPQUMHQ2IPXreX2JQkb2sq1mz39SmIWXZuXw5igiD/H7EPbll1+6dLHs7Gz06tXLpdcGmoALYQZtzcIi4V//AWi+JmzrPhiY+Gtg8F0MY0Qiswxh1nz1q0nITIxy+txLN5fj32UXAACnfzsdMimDHYUevw9hZF/AhjADdSOwbz2w6xVAXS9sYxgjEp0jIcya8hW3IT4qzKVz9+wWia9/Pdml6xIFGr8PYf/973+dvtCUKVMQGRnp9OsCVcCHMIOWOiGM7XmNYYzID7gawqw59dI0yGU3/g87eu77xvTCC3cNZRcoBSW/D2FSJ3/wSiQSnDx5En369HH2UgEraEKYAcMYkV/wZAjzlMXje+PpGUPEbgaRRwRECKuqqkJKimPrEMbGxqK8vJwhLBgwjBGJ6on3yvGfg8K4rbMvz4BOp8O276rw4D/9b+3e6cPSsO4nI1kxo4Diy5/fLs0/MH/+fKe6Fu+9997gCiKhLDIBmLgMKPzFjTB25RiweQHDGJEPpMQpAAA/G9cbgNDTMG1YeqfpKlrbNRj07Daft8/Ux4er0Hv5x8bnG+aNwpQhqSK2iMi/cGC+lwRtJcwSK2NEPrXqk2P485dnXOoC1Ol0+NmbB/D58Rovtc453z47hRPOkt/x+0qYozo6OiCXc7LPoMbKGJFPGX5tlrrQxSeRSPDGgtEW59Nh+fuH8e43lZ5onlNG/OYz49fR4TKUP3eb2Y0CRMHOq5/2goICb56e/IkhjD1+CJi4HFDE3whjr98EHNoMaDrEbiVRwNNohRTmqXFWEokEL/9guOiz76vaNOj39CfIXrYV2cu24p71u8GOGgp2Xg1h/A8UgmyFsffvB9aNBg7+A+hoE7uVRAHr65NXAQAnqhpEbol3fXP2Onov/9gYyv785Wmxm0TkcR7vK3zrrbcACAHs+vXrxucAMG/ePE9fjvyVaTflNxuEbsraM8B/HwG+/D/g5seAEfcBYRFit5QooJyobgQAfHHiisgt8a1VnxzHqk+OG5/vXDoR2cnRIraIyH0eD2Gm1S/D16yIhbDIBOCWJ4HCB4GyvwO7XxEWCv94qbBO5U1LgPyFgCJG7JYSUQCZuGan2XPLiWeJAoFX744cOXIkDh70v7lrfCFk7o50Vnsr8O0/gF1/FMIYAEQmAmMfAkYvFkIbEdlkOlmrp8dx+eNEsK6qWDWd85ORS4Lm7khWwKiTsAigYDEwcj5waBPw9e+FbsrPXwR2/QkoeAAY8xAQnSR2S4n8WpiMAaMrpvOTPTl1IB6e1E/E1hBZ59VKWHt7O8LCul4wNlixEuYgTQdwdAtQukYYwA8AYVHAqEVCV2VsmqjNI/I3j737LT5UXsKvbh+IhyZ6NlhU1jbj28o63DEsHVJp55CnUnfgwvUWTF1b6tHr+tqO4gnol8IhEGSd3y9bRPYxhDlJqwVOfCyME7usFLbJFMCInwphLDF0lrwi6krxJiXe//Yinpo+CA/c0lfs5phpUncg57lPxW6G075/cRrC5RxPRoKA6o785ptvsGzZMly5cgX9+vVDXl6e8ZGVleWJNlIokEqBwXcAg2YAp0qEMFa5FzjwBlC2ERgyCxj3OJCeK3JDicSl0f/e7Mpkrd4Wo5CjYtV0s67AQDDgmU+MXz9wSx88NX2wiK2hUOJ2JWzQoEHIysrCnXfeiYqKCiiVSiiVSly/fh3dunXDtWvXPNXWgMJKmJt0OuDcbmDXWuDk9hvb+0wSwljvCYAf/hAi8jbD4Pnx/ZPxj58Vitwax+h0OrS0a9DQ0oG/lJ7BG7sqxG6Sw8qeKUJSjELsZpAPBVR3ZHR0NA4dOoS+fc3L4ufOnYNSqcRdd93lVgMDFUOYB1V9J9xN+d1/AJ1G2JYxArj5cWDwTEAqE7V5RL7kzbsjxdSh0eLTI9X4U8lJ41xo/mblnUMx/6ZssZtBXhZQIey2227D008/jQkTJniqTUGBIcwLrp8D9ryqn3W/RdiW2FcYM5b7Y078SiEhWENYV3Q6HUqO1eD+tw6I3RQzZ3473eoNDBTY/D6EzZ49G8OHD0dubi50Oh1ee+01bN68Gd26dfNGGwMSQ5gXqa4C+/8iPFquC9tiUoXZ+Uf/DIiIF7d9RF4UiiHMFo1Wh2/PX8ec9XvEbgoH9wcRvw9hTz75JJRKJcrLy3H1qrCOWVJSEu666y6MGTMGI0aMwLBhwxAeHu7xBgcKhjAfUDcBB98C9qwDGi4I2xRxwKiFwgz9cenito/ICxjC7BP7Ls1vn52CbtGh+/Mv0Pl9CDN18eJF42B8w+PMmTOQy+UYOHAgDh065Km2BhSGMB/StAOH/y2MGzPMNSYNA4bNAcY+DKQNE7d9FDS+OFGDz45W49kZQxAZLs5YRIYw13RotNh6+DIee1fp0+uyyzLwBFQIs6apqclYKXv44Yc9ffqAwBAmAq0WOPmpEMbOm3RP9JkIjH0E6FfEOyrJLYYAdFPfJLyzeIyobQAYwtyl0erw5OZyvP/tRa9fS8zPDDkn4ENYoKirq0NRURE6OjrQ0dGBxx57DIsXLzbur6iowKJFi1BdXQ2ZTIa9e/ciOjraoXMzhInsQpkwiP/ohzfuqOw+SFgSafhcDuInl5gGoBiFHN+tnCpqGxjCPK+msRUFL5V49Rq7l01GRkKkV69BrvP7EHbo0CHk5ORAKnVsEOKRI0cwcOBAyOVeXarSaRqNBmq1GlFRUVCpVMjJycGBAweQlCSsWzhhwgS8+OKLGD9+PGpraxEXF+fwe2AI8xN154G964WxY236296juwuLhY/+GRCdLG77KKDYWuD657f0wXIfTfDJEOZb7RotJq3ZiQvXWzx+bm8sPUXu8/sQJpPJUFVVhe7duzt0fFxcHJRKJfr08d+lZ2prazFy5EgcOHAAycnJOHLkCB577DHs2LHDpfMxhPmZ1nohiO1df2MQvzwCyP0RMOZhoPsAcdtHAcFWCDPl7UlUGcLEpVJ3YKiHB/2/cNdQzBub7dFzkuv8ftkinU6HZ599FlFRUQ4d39bW5splUFpaitWrV6OsrAyXL1/GBx98gFmzZpkds27dOqxevRpVVVXIzc3FK6+8goKCAoevUVdXhwkTJuDkyZNYvXo1kpOFysjJkycRExODmTNn4uLFi5gzZw6eeuopl94H+YGIeGE+scJfCF2Ue14FLn0rLIlUthHoPxW46REgezzHjZFbvjp5lUEpiEUr5Gb/pt+ev467X9vt1jlXfHgEKz48wm7KEORSCLvllltw4sQJh48fO3YsIiOd/2CpVCrk5uZi0aJFmD17dqf9mzZtQnFxMdavX4/CwkKsXbsWU6dOxYkTJ5CSkgIAyMvLQ0dHR6fXbt++HRkZGUhISEB5eTmqq6sxe/ZszJkzB6mpqejo6MBXX30FpVKJlJQU3H777Rg9ejSmTJni9PsgPyLT3zWZ8wNhWaQ964SFw09+KjxShwGFPxeOCeM3Q7Lu5n5J+Of9YxyaCsE0kJ3+7XTI3LhTrrVd4/JryTtGZHUzhrKG1nYMf367nVfYdtPLnwPgnGOhxOWB+S+88AKeeOIJhwequ0sikXSqhBUWFmL06NF49dVXAQBarRaZmZlYsmQJli1b5vQ1HnroIUyePBlz5szBnj178Pzzz+PTT4VvsKtXrwYgzJFmjVqthlqtNj5vaGhAZmYmuyMDwdVTwL7XgW//eWMm/shEYb6xUT8D4nuI2z7yG4ZANX1YGl77ab7ZPnWHBgOf2ebwucpX3Ib4qDCnrm9ZdWGVzX+dqGrE1LWlLr++YtV0SFiVF4UvuyNdjtorV66ESqXyZFuc0tbWhrKyMhQVFRm3SaVSFBUVYc8ex2ZPrq6uRmOjMFi7vr4epaWlGDhwIABg9OjRqKmpwfXr16HValFaWorBg20PvF21ahXi4+ONj8zMTDfeHflUcj9gxu+A4qPAlBeA+EygpRb46nfA2mHA5gXA+X3CouJEACLDOnciKOQynH15Bs6+PAOnfzvd7jlyX9iO7GVbkb1sK/61/7xD13W324t8Z2BarPHz8NPCLKdf33v5x15oFfkbl0OY2DNbXL16FRqNBqmpqWbbU1NTUVVV5dA5zp07h/HjxyM3Nxfjx4/HkiVLMGyYMLGnXC7Hb3/7W9xyyy0YPnw4+vfvjzvuuMPmuZYvX476+nrjo7Ky0vU3R+KISgRufgx4VAnMfVsYH6bTAEc+AN64DfjLRED5L6BDbe9MFOSiFV1P1CqTSow/gM84EMiWv3/YGMiyl23FdZVr42jJP7109zCcfXkGSp+c5NTrspdthVbLX/6CmVtzRgR6qbSgoABKpdLm/mnTpmHatGkOnUuhUEChUHioZSQqmRwYPFN4VB0G9v0ZOLwZuKwEtvwC+OxZYNQi4RGbJnZrSQTRCse/dUr1gQwQJgft+5T9CseI33zmctvIf2UlRQnB/EoTJv/uS4de0+epj3HgmSIkx/DnSzBya+TfgAEDkJiY2OXDW5KTkyGTyVBdXW22vbq6Gmlp/MFIHpI2DLjrVeCXR4FbVwCxGYDqCvDl/wF/yAH+s1iYGJZCSrSLSxaZVsiO/+Z2D7eKAkWf7jE4+/IMrJ2b59Dxo17cgR1Hq+0fSAHHrUrYypUrER8f76m2OCU8PBz5+fkoKSkxDtbXarUoKSnBI488IkqbKIhFJwHjnwBuehQ4/pEw31jlXuDwe8KjRz4w+n5g6N28qzIERIa7P/F0RJjMWCGrqm/FmFXenaWd/M+sET1wy4DuGOlA5fP+tw7wRowg5NZ3kh/96EfGqSC8oampCadOnTI+r6iogFKpRGJiIrKyslBcXIz58+dj1KhRKCgowNq1a6FSqbBw4UKvtYlCnCxMCFpD7xbmGdv3F+C7fwMXy4THp08BI+4T7qxM9N/Jick9MXbGhDkrLT7C+AP2yc3l2Fx2waPnJ/+VGB2O07+d7lA3NQUfl7sjfTEe7MCBAxgxYgRGjBgBACguLsaIESOwYsUKAMDcuXOxZs0arFixAnl5eVAqldi2bVunwfpEXpExArj7dX1X5XNAfBbQch3Y/SfgTyOBt+cAJ7YBWs7tFGyiPFAJs2X1Pbk4+/IMHLGzLmW4jPNIBQtDN3WCk1OWUOBzeZ4wqVSKqqoqr1bCAhmXLQpBWg1wcjvwzV+BUybLXcVnCZWxkfO4VmWAM8wT9saCUZg8yDe/7FXWNmP8//ui0/ZYhRyHRVhAnLzrs6PVWPzWAav72B3pGwExT9jJkycdXjuSKCRIZcDAacC9/wGWHBSWSYrsBtSfB0pWAr8fLAzkr9zPOccCkMZkqgBvVsIsZSZGoWKVlWkuAvvmdLJhypBUm2HrWhOnxwk2LoewAQMG4MqVK8bnc+fO7XSnIlHISuoL3PYiUHwMuOs1IGMkoGkTBvH/bQrw5/HCmpVt4k14TM7p0GqNX2cn+WalEAOJRIJfFpkvMs8MFtwOPX9bp20fH74sQkvImzw2WevHH38s6gz6RH4pLBIY8VPggS+AxZ8DefcC8ghh/rH/PQb8bhDw8a+AmmNit5TsMP2WFxPhu0qYwWNF/c2ex0Vy/FAwi4vo/O/76henrBxJgYwjO4l8pUc+MGudUB277UWgW29A3QDs/zPw2hjgb7cJM/K3t4jdUrKiw6Q7UuYHE1XHODFhLAWm1XOGmz2vbmB3ZLBx6+5IyzskA30GfSKfiEoUxostOSiMHxt0ByCRAZX7hBn5fzcQ+OTXrI75GdMxYVL++ko+MCe/J+7KyxC7GeRFLv8qpdPpsGDBAuNSPa2trfjFL36B6GjzsRLvv/++ey0kClZSKdCvSHg0VgHfvg0cfBOoOw/sWy88MguB/IXA0FmcBFZkWj+rhFHwk0gkeGr6YHyovCR2U8hLXA5h8+fPN3t+7733ut0YopAVmwbcshQYVwyc+VwYtH/8Y6E6VrkP2PZrYPiPgPwFQOoQsVsbkjQmg8JkUoYw8o14jv0Lai6HsL///e+ebAcRAV1Xx/b/WXhkFgphjEsk+ZShEiaViDf0IjZCjsbWDgCc5SRURIR5dnUG8i8c2UDkrwzVsUfLhbFjg2eajB17UBg79vGvgOqjYrc0JBgqYWJWwablpIl2bSLyPLdCmFarxRtvvIE77rgDOTk5GDZsGO6880689dZbnaawICIXGapjc98Gio8Ct64AEnoBrfVCZez1scBfi4CyNwF1o9itDVodGuF7WrtGvO9tw3smGL/W8ntsSGrr0No/iAKGW/OE3Xnnnbj//vtx8eJFDBs2DEOHDsW5c+ewYMEC3H333Z5sJxEBQnVs/BPAo0rg3veBwXcCUjlw4Rvgf48CawYCWx4Gzu9lf5WHXfGD2cpNe0EZwkLTJ99xwtZg4vKYsI0bN6K0tBQlJSWYNGmS2b7PP/8cs2bNwltvvYV58+a53UgisiCVAv1uFR5NNUD5v4CD/wCunQSUbwuPpP7AiHuB3B8DsVzU3l2HL9SL3QRITObJL+idJGJLSCyPvavEXXk9xG4GeYjLlbB//etfeOqppzoFMACYPHkyli1bhn/+859uNY6IHBCTAtz8GPDIN8CiT4VZ+cOihEC24zlhzcp//QQ48Qmg6RC7tQFrVHY3sZuA4T3jjV+PzEoQryFE5BEuh7BDhw7h9ttvt7l/2rRpKC8vd/X0ROQsiQTIGiPMyr/0e2Dmn4CeowGdBjixFfjXj4A/DAV2PA9cOy12awOOofcvPT5CtDYkxyhEuzb5j3aNFq3tGrGbQR7gcgirra1FaqrtLo7U1FRcv37d1dMTkTsUsUD+fOD+HcBDe4GxjwBRSUBTFfD1H4BXRgJ/ny4sk9TWLHZrA0KbRhgQfbm+VeSWCDgiLHT1f/oTDHp2m9kqDhSYXA5hGo0GcrntIWUymQwdHez6IBJdymBg6ktA8XHgh28B/aYAEilwbteNZZL+9zhwsYyD+bvw77ILYjfBbGA+70CnjbvPit0EcpPHli2ypFaLfycREZmQhwND7hIe9RcB5TvAt/8A6s4BZX8XHt0HA3k/AYb/ULgTk4ze2Xde7CbAdIYyZjC6eL1F7CaQmzy2bJE1vDOSyE/F9wAmPClMd3H2KyGMHf0vcOUY8NmzwoD+fkXCnZUDpwNh4o2D8hdpcRGoahC5K9K0EiZeK8hPNKnbxW4CuYnLFhGFMqkU6DNBeEyvA458IFTILuwHTm4XHhHxQM4PgNyfAD1HmfeJhZDmNvGHV8ilN0aQcPlKurlfsthNIDe5HMKIKMhEJgCjFgqPq6eA8neA8neBhovAgTeER1J/IO/HwmLi8aE1V1FDq/ghLDE63Ph1fGR4F0dSKGhu4x2Sgc6lENa7d2+XFrB9/PHH8eijj7pySSLypeR+wvJIk54GKkqFyWCP/leYe6zkBaDkN0DfSUJ1bNAMIDxK7BYThZx39p3HjwuyxG4GucGlELZx40aXLpadne3S64hIJFKZELb6TgKmrwGOfigEsnO7gNOfCw9FHDB0FpD3UyCzMGS7K4m85cGJffH6zs5z+x2+KP4qDuQel0LYhAkTPN0OIvJ3EXHAyPuER22F0FVZ/g5Qdx44+JbwSOwjDOYfdg+Q2FvsFhMFhaRodj0HK5fnCSOiEJbYG5i0HHi0HJj/kVAFC4sGas8AX7wE/CkP+NttwP4NgOqa2K0lCmhhMv6oDlb8lyUi10mlQO/xwKzXhKWSZq0H+kwSJoOt3Ad8vBT43QDgnbnAd//h7PwexUkqQsXUoZyzL1jx7kgi8gxFjHDnZN6PgcYqIXQd2gRcLge+3yY8wmOAwXcCw+8Bek8QxpwRUZfCZBxnGawYwojI82LTgLEPC48rJ4BD7wGH3xPGj5W/Izxi0oT5x4b/EEjP5YB+IhsCpuZ5+RCgaRPmEySHMIQRkXd1Hwjc+iww+Rmhi/LQJmFS2KYqYO864ZE8QAhjQ2cDSX3FbjEROUqrBU5+CuxZJ6y+0bMAuP8zsVsVMBjCiMg3JBIga4zwuP3/gFM7hOrYiU+Aq98Dn78oPNJzhTA2dBbQLVvsVhOJzi/XCW1TCdPV7H0duHZK2CaRAQlZQHsLEBYpbvsCBEMYEfmePBwYNF14tDYAx/4HHN4sTAx7uVx47HgOyBgJ5MwGhswCEjLFbrVf8csfzOQVijDb99DpdDqXJk93WcNl4JsNwgoaLdeFbYp4YNQCoOABIL6n79oSBBjCiEhcEXHAiJ8KD9VV4Nh/he7Ks18Dlw4Kj+3PAD1HCxWyIXf5fMkkHRMPiSguIszmvlM1TeifGuv9Rlw+BOx9DTj8b0CrXzi8WzYw5iFhihpFjPfbEIRCeoqKuro6jBo1Cnl5ecjJycGGDRvM9q9ZswZDhw5FTk4O3n77bZFaSeQ/Pjtajd9tP+G9UBKdDIxaBMz/H/DECWDG74Be4wBIgAvfAJ8uB/4wBPjbVGDPa8D1s95phwV1h9Yn1yFyxPj+Nxbu/ue+8967kKZdWCXjzZnAn8cL3Y/adiBrLDD3bWDJQaDw5wxgbgjpSlhsbCxKS0sRFRUFlUqFnJwczJ49G0lJSTh8+DDeeecdlJWVQafTYdKkSbjjjjuQkJAgdrOJRLP4rQMAgFc+P4WzL8/w7sViUoDR9wuPxiph7coj7wPn9wCVe4XHp8uB1GHC+pWDZgBpw7xyl+XOE1c8fk4iVynkN+onnx2txvN3DvXsBWrPCCtgfPtPQFUjbJPIgKF3A2MfAnrke/Z6ISykQ5hMJkNUlLDwsFqthk6nM/6Gf+zYMYwdOxYREREAgNzcXGzbtg0/+tGPRGsvkT/JXrbV+HXFqun48vsr6B6rwNCMeM9fLDYNKHxAeDRcEn47P74VOLcbqD4sPL58GYjPuhHIssYCMs98i1v96XHj17cOSvHIOYlcNSQ9DjuOCeHoYl2LZ07act18bKZBTCow4l4gfyHHZXqBX4ew0tJSrF69GmVlZbh8+TI++OADzJo1y+yYdevWYfXq1aiqqkJubi5eeeUVFBQUOHyNuro6TJgwASdPnsTq1auRnCyUeXNycrBy5UrU1dVBp9Nh586dGDBggCffHlHQ6L38Y+PXA1NjcaK6EQBw6PnbuhzP4pK4DGDMg8KjuVaYBPb4VuBUCVB/Htj3uvCI7Ab0vw3oNwXoOxmITnL5kqevqIxfx0d6+P24aHhmgthNIJHcPbIn/vT5KfdPpG4Evv9UmFj55Gc3xnpBIvyfGbUQGHA7IPOPz3ww8usQplKpkJubi0WLFmH27Nmd9m/atAnFxcVYv349CgsLsXbtWkydOhUnTpxASorw22peXh46Ojo6vXb79u3IyMhAQkICysvLUV1djdmzZ2POnDlITU3FkCFD8Oijj2Ly5MmIj4/HmDFjIJNxdm8iewwBDACGP7/d+HWf5Ghcb27D9eZ2VKya7pk7uqISgbyfCI+2ZuDMF0IgO/EJ0FIrzEl2aBMAidCF0n8K0K8IyBjh8mz9tw1Ndb/dbvj22SloaG1HjwROARCqZO7837l+Tghe338i3PyiabuxL2WIMIHysHuAbr3cbyjZJdEFyG0/EomkUyWssLAQo0ePxquvvgoA0Gq1yMzMxJIlS7Bs2TKnr/HQQw9h8uTJmDNnTqd9999/P+6++27MmGF9HIxarYZarTY+b2hoQGZmJurr6xEXF+d0W4j8jU6nM6t4ecqXT07EhNU7sXPpRGQnR3vmpJoOYczYye1Chaz6O/P9kYlAv1uFdS57jxfmNrKhpU2DwSu2GZ9/sXQienuqnUQOsuz+N/2/uOmBMfi/bcfxwl05yOlhMRygpU7otj/7tfBLSs1R8/3degvTwOTMAVKHePEdBI6GhgbEx8f75Oe3X1fCutLW1oaysjIsX77cuE0qlaKoqAh79uxx6BzV1dWIiopCbGws6uvrUVpaigcffNC4v6amBikpKThx4gT279+P9evX2zzXqlWrsHLlStffEJGf69B65/e1Cat3AgAmrtlp3DYoLRbHqxrRt3s0dhRPQLtGh3C5Ezdzy+RA9jjhMeUFYRzZqR3C4/ROoUp2eLPwAICEXkD2eCGQZY8zm+vINIABQK/EKBffKZFnWFaR5/5lLwDg3r/tg/LxYcDFMuEGlrNfCVNLmC58JJEJEyYPuF14JPfnkmEiCtgQdvXqVWg0GqSmmncNpKam4vjx4zZeZe7cuXN44IEHjAPylyxZgmHDhhn333XXXaivr0d0dDT+/ve/Qy63/de1fPlyFBcXG58bKmFEwaJd47tpGo5XCV2ap6+oOlXfBqfHYWhGHO4e0QM390u29vLO4jKAkfOEh6ZdmO7i1A5hAPLFg0DdOUB5DlDqp6Lp1hvodTOQORoDJS04qesJrX5GH6mUP7DIPySgEUOlZ5ErOYNc6WkM15wBfl/b+cCk/sIvF73HC9XfqETfN5asCtgQ5gkFBQVQKpU29ztaUQMAhUIBhULhgVYR+af2Dv8YuXDscgOOXW7Av8sudNq36YEx+O3Hx7Dl4Zuh09kITLIwoNdNwgMQBief3ytUDSq+Ai4rgesVwkP5Nj5VAE26CJRr++JbXT/ghBRIzxPu2GQFgXxB3Yg8ySkMkFZioOQC8NZfsF+hRIqkrvOxEqkwtqvnKKG62+tmIC7d500mxwRsCEtOToZMJkN1dbXZ9urqaqSlpYnUKqLg1ebDSpirDN0yltUzwx2bHy0Zh6r6VkwalAIJ9CFNESsM2O8/RTi4tQE4vwd1J77Gkf0lyJWeRoykFTfLjuBmHAH+9aFwXFQSkJojzE2WmgOk5QDJA4UlmYicodMBzdeA2gphjq7rFeZfq65gi+nv+GeAFH3+P6dNwSFdHyi1fVGu7Yt/r/wFEM4xi4EiYENYeHg48vPzUVJSYhysr9VqUVJSgkceeUTcxhEFIdPuyNO/nQ4JgD5PfYwX7hqKFR8eEa9hDjDcsXnHK1878aoxAMZACi36Sy5ghPQURkhOYW56lbDgePM1oOJL4WEglQtdmUn9gKS+wnibpH7CIyaVlbNQ1N4iLMfVVAM0XAQaLwt/NlwS1mE0bOto7fI01boEnNBm4ntdT9w/ewYuhmdjyts1aEaE+YEMYAHFr0NYU1MTTp26MRdKRUUFlEolEhMTkZWVheLiYsyfPx+jRo1CQUEB1q5dC5VKhYULF4rYaqLgZAhhMQo5ZPpuPsOs+fPGZmPUiztwtUmNl+7OwdMffGfzPIFGCylO6LJwQpOFdzEZcx+eIfxgrTkGVB0W7rys+k74U90AXDspPCyFRQkD/o2PzBtfx6YLSzZFJDCo+StNh/Dv21ovPNQNQtW0tU4IWc1XAdU1/Z8mz9tVdk9tFNcDSOwjrMmY2Fv/dW8gsTcKn7/xC8T9I2ege4cWzfjE42+TfMuvQ9iBAwcwadIk43PDwPf58+dj48aNmDt3Lq5cuYIVK1agqqoKeXl52LZtW6fB+kTkPkMIC5NZDwkHnikyfr12x0lcaVTjrUUFmPfGfp+0z6fCIoEeI4WHgU4H1F8Arp3SP07rA9kpoO480N4sVNCufm/7vNIwIYxFdzd5JAMR8YAiTljs3PCncVu8EPDkitAOcDqdcNOFpu3Go6NVmD+uvUUIQ+0tQJv+z/Zm/cNiW5sKaGvSh62GG8Grvdn1tknDhH/L+B7CTSKxGcKfpo/YdOHf0EFO3S1MfsuvQ9jEiRPtLhT8yCOPsPuRyAfa9APzw2T2v/l/8/SNQBYmk6Bdo0PxlAH4/WddBJBAJ5EIy7okZAJ9J5nv61ALAc3sUXnjz6Ya4Ye9tl3ommq87EoDAHkEEBahD2URQlg0/VMWJkxSK5ULwUAqN3kut9gvF85p+R4tr2lrn1YD6DQmf2otnpv8aetY01DVoTZ5rv/auE1tPumoN4VFmYfiiHggKlkIy1FJ+j8tniviQjsgk01+HcKIyH/cqIQ59xv4yZemG78O6hDWFblCGCOW1Nf2Me2t+i6sK0J3lurKja9Nu78s/zR2d+mAjhbh0XLdJ2/Lv+lDaXgUEBYtBNHwKCFEhUXpn+u3m24LixJu1jCrNsYJXcWKWC7hQx7FEEZEDjGEMHe6QQxjyLRaHfo85fnZ9wNaWMSNMWLO0HQIXWUdrUKXWkervputVQhkpn9q2wFth7761GHy0FedTJ8b1xHU69Qroet6n0QmVNUkMkAqtXhusl0qt32sLFwIPbJwQKYQvpYr9M/Db+y33CZXuLwsVSCJVcjRqO68LB8FDoYwInJIa7s+hDlZCbNGKpUYA9me09fw4w173T5nyJLJAVkcAC6PFmr+t2Sc2UoTFHg4so+IHFLfIlRG4iM92x0ztm8Szr48wxjKiMgx1tZaPamfjoUCA0MYETmkrkUY+Bwf5b0xMYYwtu3x8V67BlEwKRpsPhvAlD+UitQScgVDGBE5pK5ZqIQleLgSZs2gtDhWx4gc8Nf5o/CLCeY3fAx6lvOHBQqGMCJyiKE7MsGLlTBrDGFsTB/xFx1Oj4+wfxCRj1neLNParkWtykdTdpBbGMKIyCF1zcI39YQocdZGfPeBsTj78gzse+pWUa4PAF/9apL9g4h8TN2h6bRt5G8+E6El5CyGMCJyiLcG5jsrNS4C3784DWd+O93+wR4m98CdoUSepm7XWt2evWyrj1tCzuJ3FCJyiHFMmI+7I60Jl0shlUpw/De349Dzt4ndHCJRDesRb3Pf77af8GFLyFkMYURBwtoSX1qt+bYOjRZtHTd+a9bpdKhvNp+U09DtaGDo6jCOCYsUpzvSmogwGeIiwqBcMQUfPHST2M0hEsUduem4f1xv/G3+qE77Xvn8FE7VcNoKf8XJWv2ITqfDiepG7DtTi1M1TWhsbYdUKkHPblEYkZWAsX2SEBHmnVmgK66q8FH5JZy60oRwmRR5WQmYmZuBuAjXqx6X6lrwr/3nceaqCr0So/DjgixkJkY5/PrWdg027j6L8so6DEyLxaJxve22R6fT4T8HL2L7kSoMSovFLyb2RVS47Y/558er8c6+SvRPjcFjt/a3+vfbrtFi7Y7vceRSA342rjfG9+/e6Ziyc7VYu+Mk+qfEYtm0QWYDZbVaHf6w43vsPXMNj97a3+z1re0aPP3Bdzhfq8KLs4ZhYFqscd+6L07hf+WX8NCkfrgzN8N4/BPvleNkTSP++KMRGJwuTND52s5TeO2L03hy6kDMvykbALD60+P485dn8PydQ3HvmF6oa27DjD99jea2Dmx5+Gb0SorG8vcP491vKvHS3Tn4aWEvrP70ONZ9cRqPF/XH40UD8Kt/l2PLt5fw5/vyjZUwsbsjrUmICseIrHB8tGQc/m/bcXx18qrYTSLyGYVchmfuGGJzf9HvS3Fk5VREK/gj399IdPZWyCaXNDQ0ID4+HvX19YiL63om65Y2DTaXVeLvu86i4qrK5nGxCjnuHdsLv7ilr8fmampsbcdvPz6Gf+2v7LQvISoMv7krBzP1AcAZ276rQvF7SjS33RgwGhkmw59+PAJThqR28UqBSt2BH2/Yi0MX6o3b+qfE4L2fj0W3aNuVmD/uOIk/7LixPuFNfZPwj58VQibtvHju1yevYt4b+2AoFs3MzcArPx7R6bhVnxzDn788A0CYLf6Tx8ejb/cY4/665jZMXLPTGFJ+WTQAjxX1N+7f8u1FPL5JCQCIi5Djq19PNgaZ13aewv/bJnQX5GYm4MOHbwYAHL3UgOl/+goAEKOQY99TtyJaIcc7+87jqQ8OAwAmDeyOvy8swLUmNUa9tAM6ndC+8uduQ0NrOwp/WwIAiI2QQ7niNry5+yxe+OgoAODnt/TBgxP7Iu8FYfBuRnwESn81Cf2f+QQ6HSCVAHuX34oC/TnG90/GN2dr0dquxVe/muRUmBbDB99ewC83lXv8vJwyg8RiOr6rq89hu0aL/k9bn6Li5EvTnF77NRQ58/PbXfzXENmOo9WY/LudWPHhEVRcVSFcLsWEAd3x4MS+eGbGYDw5dSDuye+JjPgINKo78PrO05jyhy+x80SN29euaWjFPev3GAPYxIHdsWzaIDx2a3/07R6NuuZ2LPnXt/jb1xVOnXf3qat4+J2DaG7TIL9XNzw1fRAKshPR0q7BQ/8sw2GTYGXLs1u+w6EL9egWFYZfFg1AapwCJ2ua8OyH39l8zbHLDfhjiRDAfjQ6E9HhMuw+fQ3vHegcMLVaHX7z0VFodUB+r26QSSX4X/klHDxvvvDxtSY13tC//9gIOdo0Wry+87TZMZsPXDAGMAB4c89ZdGi0Zs8NGlo78PHhy8bnHxy8aPy6vLLOGMJNj2lSd6D0+ysAgE++u7F916lraG3XYPfpa8al+9o0Wuw/W4tvztYaj2ts7cCJqkazbWXnruObszfe66X6VuyrqDWeR6sDPvmuyrj/u4v1xmWL3KmO+srdI3ri7MszoHBjnUuiQNRVyOr/9CfQaFl38Sf8DiUSdYcGy98/hPvfOoDL9a3okRCJF+4aim+fnYI3FxXg17cPwv3j++DhSf2w+p5cfP3rydgwbxT6dI9GTaMaizZ+g3f2nXf5+ip1B+a9sR/HqxrRPVaBTQ+MwcaFBfjFhL745ZQB+PTxW/DzW/oAAH7z0VHsOFrt0Hnrmtvw+CYlNFod7szNwHs/H4sHbumLdxYXomhwKto1OhS/pzQLKZbKzl3H+99ehEQCbJg3Co8V9cdf542GVAJ8dOiyzRD35y9PQ6sDbh+ahpd/MBy/nDIAALDhqzOdxkvtq6jFiepGxCrkeGP+aMzK6wEA2GRREdx6+DLaNToM6xGPNxaMBiBU+VrbNWbHAMALdw1FUnQ4alVt2F9Ra/z7UFbWAQDuHZMFAPjqpBCoLta14GRNE2RSibFbcdcpoRtt75lrAIDocKF79OD569DpdPju4o333qbR4ruL9WbbAODIpXqU669pcLyqAUcvNxifH7vcgIqrTWbHWAZ7Q/ADgOsmITMmInC6NE68OI3VKwo5XX3m+z71cZfff8m3GMJE0NDajnv/ug//2l8JiQT4+YQ+2FE8AfPGZtvss5dKJZgyJBUfPzoe9+T3hFYHPPXBYWz59qLV4+351X8O4XhVI5JjFPjPL25CYZ8ks/1ymRTLpg3CfWN6AQCWvX8I1x2Y/O+1nadR06hGn+7R+L8fDDd2A8plUqy5ZzgSosJwsqYJW5SXbJ5jQ6nQ9TdnZE+MyhYm6BzWMx536YPS374+0+k1dc1t+OiQEIYentQPAPCjgixEh8tw5ooKZefMK1wfHRKuP21YGuKjwvCDfOHc245Umf2muOOYEEzuzM1AflY3dI9VoEndgW/P1wEQqlSH9SFo8qAU3NwvGQCMVSZDdal/SgzuzBWusb/CPFANSovFrYNSAABHLjUIYwOrhIG0Py4Qgtvhi/W4XN+K683tkEslKOgt/L2cuaIyhqssfRfhyeomnK9tNnu/Z66ocKmuxfhc1abB4YsNZsdYjqPadbrzuKpYhdxq166/O/XSNJQ8MUHsZhD5zG9m5djc1+/pT9Dc1uHD1pAtDGE+1tDajnl/249vzl5HbIQcbywYjeXTBiMy3LEB9xFhMvy/OcOx6ObeAIAn/13uUPeeqW3fVWHrocuQSyX48335yEqyPr5HIpHg6RmD0T8lBleb2vD6l6etHmdQ09iKN3efBQA8O2NIp/eUEBVuXF7jb19XWL2br7qhFZ8dE6pui/WVOIP7xgqB8NMj1VCpzb+BfH68Bh1aHQalxWJYT+F27RiFHLfq11X7wqLKs/OEUOWZNiwdAFDYOwkxCjnqW9pxvEoIJxqtDgf14W1s3yRITcJP2Tmh0vXt+evQaHXo2S0SPbtFIb9XNwAwdmsawtSwnvEY1iMeEglwtUmNWlUbvtfvG5gWiwH6AfnfVzfiYl0LGtUdCJNJMG1YGgDhxokzV4SuyuzkaAzWH3/6apMxXN3UVwjSF+tacFG/rUAfYg+cq0W7RgeZVGKcYmJ/xTWzv5PjVeZ3ULVamXsoNoCqYKbkMin6do/Bw5P62j+YKAgYfoG2ZciKT3Humu0xyOQbDGE+1KHR4qG3D0JZWYf4yDC8+8AYTBqY4vR5JBIJnpkxGLcNEbr3fvme0qx7rCvqDg1e+N8RAMADt/QxhgZbIsJkeGrGYADAm7vP4kqj2uaxmw9cgLpDi9zMBEwc2PkOQkAYqxUul+LY5QZ8Z1GJAYSAqNHqkN+rGwakxprtG5GZgKzEKLS0azpVbXbog9ttFoP+De340qRrraq+FRfrWiCVAKP1IUUmlRj/Lgxdid9XN6JJ3YEYhRyD9KEnP0s4RlkpBF9jyNLP0zM0Q+hWPFXTZDwHAAxMjUVkuAwZ8ZEAgNNXVDhhsm9AaozxdeevCVWsrMQoZCdFAwBqGtU4Vyt8w8xIiEQv/fYLtS24XN8qtE3f/kt1Lbh4XQhhI3olAADK9e1Ni4tAZjchdFc3qI3XNxXZxR24cX54Z6Qznpw6CGXPFIndDCKnlTwxARIJ8Hf9sAhHHP/N7V3un7B6J/6x95y7TSM3MIT50P9tO46vT11FZJgMb/+sEEMzbE+wZ49UKsHLPxiO7rEKnKppwl+/6txFZ81731TiUn0r0uIi8Oit/e2/AMDEAd2Rm5kAdYcWm8s6D3IHhIHuhgHwPy3MgkRivcsqISrcGJS2mgw+N7AVpgAhfE4YIISqPSZdZTqdDvsrhMrTBIvwN1ZfHTp2udEYVA/oq1iD0+MQY9L9O1IfsI5catC/RvhzaEaccaZ0wxQSZ64IIeu0/s9+KUKI6p0shKOLdS1oadPgZLWw3xAo++qPO3OlCZX6oJSdHI0eCUI4q29pxxn94Pz0+EgkRocjMkwGnQ7GLtX0uAikxCmM1zfcgWoIYReutxjHcA3vkQAAaNG/9+6xCiRa3F1qaLtBL4vKqGn3Y6BWwkwlxSgYxCjg9O0eg4pVMzBpkOO/uEeEyYzfW2x5dst36PvUx+42j1zEEOYjpd9fwYavhLvsfvfDXGOXmTsSo8PxjL5Ktf7LM7jWZLtKBQiVOMOdfQ9N6uvwnGMSiQQ/LRTGJm36ptJqN+Lhi/U4d60Z0eEy3DE8vcvzGaaosBwI3tKmwb4zQkAydCNaurmfEKp2n77RlXbheguuNqkRJpN0CrZpcRFIjgmHRqszhqqj+pCVm5lgdqyhGnVSX8UydP/1NQkphqkpztU2o61Da6x4GYJMYnS4cfqJiqsqY7egIdhkJQrfEC/VtaBaX8FKi4tAbESYMRAaBvKnxUdAIpEgI0FYNNowDi0tPgLJMUIIM3QhdosKQ49u5t9sZVIJspPNA1V8ZFineb76dI82e24ZwgzXB4DYALgz0hFJMQrsXjZZ7GYQed0uBz7nGq2OSxyJhCHMB5rUHVj+vjC304KbsjF9WNchxRkzh2cgp0ccmtQdeHNP12XlnSeu4FJ9KxKjw/HDUZlOXeeO4emICpfh3LVmY6XIVMlxIVDdMqB7l5OjAsAt/btDKhECRJU+iABCkGvTaJESq0Bfi2BgYBiof+pKk3Fc2Lf60DIkPa5TsJRIJMjRdxUaBsIbqlf9LSpA/Q1dgtWN0Ol0xuP6JN9oS2qcAjEKOTRaHc7XqnBW33XYJznGeD1DiDF0ZwJCcAKA1Fjhz0v1rbiiD82GfYY/jSEsTnieFC0ELsP0FWnxEegeqzBre7focCjkMrOuxLgIObrHmB8XHxnWadmhnhbhzdAFamD6m7SjYxcDQUZCJO+cpJBwwMHKb/ayrWYrapD3MYT5wCufn8TFuhZkJkbiV7cP9Oi5pVKJcbD7O/vOGZeYsWaTvrtw9ogeTs+8HxUux/j+wp1/n1mZruILfQib7ECpvFt0OAalCWOnvjWZl8vw9YisBJvdmckxCqTEKqDT3agCHddXuHJsrJ9mGPNk6OY7bahwdbfshouGTCqBqk2Dmkb1jUqYyXESicQYSiprhQocAKTG3wg7KfqAZJhoNjZCbgymhm7Eo5caoNEKA+UNVS1D6DJU11L1oaxbtHlo6hYVZnyNgWHuLtMqV3xkWKcxXHGR8k6VsPR48xDWM9GyEnZjfzDOu7Xt8fGI5UziFMQsv190ZcAzn+BDpWt33ZPzgu87qp+pqm/Bxl1nAQDP3THUbpXIFVOHpiEtLgJXm9qw/Yj1+bzqW9qNQWnuaOeqYAZF+i7Cz4+bdyPWt7Qbp2mwHJNlS15WAoAbVR/Tr/Myu75ZYIh+8LthagZrYcmUYRD7uWvNaNdojXcE9bWohIXJpEjVB6hLdS3Guw4zE81DiiFIHblUD51O6PYzVKsAoLu+2nXogvB+DOFKeG2EWduTY8KNY64sV0Hopn9uOYYrzqTr0rhNH6xMq1zxkWFQyKVmY7osuyNjFJ1DWapFlc20mhaMIWxQWhwOr5wqdjOIvMqZqu9j7yrZPekjwfcd1c+s//IM1B1aFGQn4tbBzt8J6YgwmRSzRwpzUG091HmwOyDcHdih1aF/Sgz6W9wN5yjDmodHLtWbTRFhCBtZiVFIiY2w9tJO8nomADAPYYYxW8PtjJczDI4/pb+70NBNZzm2ySBb3z149poK1Q2taNfoEC6TIj2uc1vT9VWfM1dUaNS/xxSL4wyhqlxf6eoeozALOqn6kHZIH0xTTV5v2T3YLepGwLIMQ4bqlukxgBC4ZFKJWRCL0w+YNz1HXGQYJBKJccJXw37TuehiFPJOc9NZhr6kmBvPFfLg6Y4kCjWOdksaZC/byhn2vYwhzMv+Wy5MCrp06kCbXWyeMEM/GP6LEzXGcUimSvR3HU52IwimxUegR0IktDqYzciu1A8YH6GvbjnCUM0yDIJv69Aa7xa0VdEyMExKWnm9BVqtDhX6ypZhXFan4/UhrLK22TgGLSVOAamVSUcN47IMlb2IMGmnrirDMYbwaQhdBobxWoaxFaZrXXYKWhbdh9b2WY7hMoQzsxCmP9b07kXD+cxDV5jZuDFFmLRTVS3BJPTJpRKz6m0wVsIM/t+c4WI3gcirnOmWNOj71McuTwpO9gXvd1Q/0dahxbAe8Rid3XUXm7uGpMchOykK6g4t9pw2n4RTq9UZl6C5dZD9xbO7MlI/DcIBkxnob3QjJjh8HkPVqlbVhrrmNpyvVUGj1SE6XNYp1FgyhLDztc2obmxFW4cWcqmk092BBoZKVLtGZxxHlmqlCgYIC1kDQLk+YKXERnQKz4ZvZIZ5tiwHySdEWnYfmlasLAPVjX0JnSphwj7LLuy4SOF5jJXAZTrWL0pfATMNYRFhUrNjIuQyRCksJ9W90Y5wuRThJsErPIhD2A9HZRqXjyIKVq7cjPL4JnZPekvwfkf1IwtvzvZqFQwQBowblswxrD9ocOaqCteb26GQS50KStYM1w9+N8wqD9yoZjnzAywqXI50feA5fUVlHCzfu3u03b8rYyXMtLIVq7C5nE6YTGrsYvvO2EVoPegl6sd2GSZhTYntfFxX1SzhufXxWkDndRdNQ5mt80ZbhCRD5cq0gmXocjStchnClmkIU8hliAiTmhwjRYRFF2O0RegLN1kQOJgrYQAQeAsyETnv4LNTXHpd9rKtdqdCIucE93dUPxCjkHl0SoquGEKYZSXMsIRObs8EtysZhmkcvtdPQtrarkHldWGaBnvdiJYM1bAzV5qMg+V72+hSNGW4W0/doTVWtrrbqGwZGMZifXdJCGG2xq4ZBsMbJkC1Vr63NXbLwHIuLdP9lmO5TLsPLV9n2BcZduOYqHCZceJY09caApfpFBKGwGQ6JiwiTGrRHSlDmMw8epgGLa1OFzKVMKBz4CUKRpbjPp2R/+IOVsU8KLi/o/qByYNSnZ4OwlVj9Itwn6huRH1Lu3G7Yf3DkXaWKHKEYeb3s1dVaOvQouKqCjqdEEySY5z7j21YPudSXSuq6oXfrgzdgV0Jk0mNYckw8aq1ipUpQ5fhscv6CpeNSlin8VcWVS1hm+0uRavPLStjEZ3HcgEwq1CFy6TGQfCmwSDCSqULuBGcrFXCTIOTUAkzf51l5dF0rJxOJ/x9m74+mN1rZ709omDh7hx52cu2or653f6B1CWGMC8zLMDsC4nR4cY5rI6aTKhqqP642xUJAOnxEYhRyNGh1eHcNZVxQtO+DnQjWjKMy6pqaEVNo2HAvGN3VxoqVIapHuyNIzOEMMOdPpbVLIN4i/Fc1maIt3xt5wpW15WymAjrlTDzAHXjv2aUleoWYBGu9K+1FszMQlSY1KxaZu8XBLlUYhHigvtbxl15PbDgpmyxm0HkE6VPTnLr9bkvbGdVzE3B/R3VDxT2TvLp9XJ6COOyjuiDl1arM07+aZjawR0SicQ4JuvC9RZcuG5Ylsf69BBdMdxlWN3Qihr9IHd7YcrAMG2CYVoLe1Nj2OtCNLCcGNXaWomdx251XfmyPIdp2DILXuHm3YQGtu5OtPa1tUqZZYgyHQNmL4RJpRKz7krTQBesnr9zqNhNIPKJLIslylyVvWyr8fGl/iYwckzwf0cVma/H0ORkmC/Rc7GuBa3tWoTLpci0cfegswxjsi7WtRgHxqc50I1oyRC4qupbUa2vhNm6a9GSoRJmGLvVLcp6qDKwDEKWXYoGlgHLcvoGa+eyrHwp5DKzmwQiLYKOaZee6demx5kOhjevhFmvihm2R4Z1DmYKi+5EuUmoirDz+ZRKJGbXsXXzAxEFJk8v3TX/jf0ePV+wYwgD0NzcjF69emHp0qXGbZWVlZg4cSKGDBmC4cOHY/PmzSK20HGGapfhbsOTNcIYqD7J0cYB3e4yLOh8yTSEORieTBkCV01jK6ob9CHMwcleOy3bYyNUGXQKYVYqXICV6SCsVMwsu+SsBTWFla7CG8+lVr+OsJi/y8C829H6+CzD9jAr1zWtXkWESc1CmL1fEnQ6ndnrrc2tRkSB7cmpnl1OjxzHEAbgpZdewpgxY8y2yeVyrF27FkePHsX27dvx+OOPQ6VSidRCx2XrF5s+e00lLEJdI7S5X4pzdy52xVAJu1zfiqoG5ypYpgx36FxtakNruzCxaaKDg/stQ5S1bkPz/V2P2zKIslig2tp5JRKJ2Zgta4taWxubZW+f2V2LJgFLLjUfsG/82kp3ZJi0c6izHJhvej57lS2dzvz6zGBEwefhSf3EbkLICvkQdvLkSRw/fhzTpk0z256eno68vDwAQFpaGpKTk1FbWytCC51jGK/V2NqBuuZ2XDSuf+iZvn8Axvm9Lte3GCtY6S50R1p2/cmk5kvsdKWr+bas6dwdaT20hcmkkJskDcvrGER2EbIA824+y3FX1roRLc9pWrQ0DV6moSncyl2LZlUu/X7T14TJJGbH6OysSKLV6cxeL/PyfHf+bMoQ9yY6JvJne5ZPFrsJIcmvQ1hpaSlmzpyJjIwMSCQSbNmypdMx69atQ3Z2NiIiIlBYWIj9+53rj166dClWrVrV5TFlZWXQaDTIzHRt4WtfigiTGbsGz15TGRehdmTqB0cZFquuVbWhptEwoN7580eGycyCRFyE3OE7LGMUjlW2bO3vKrSZVrYsx3MZRNioWhm3uVAJM61YSUymDQ2T3/haavL3Y21gvmlgMoRJ01Apk0rMnuvQdQrTwTwQenvSYX9mr9pKFMjS4z0zZpic49chTKVSITc3F+vWrbO6f9OmTSguLsZzzz2HgwcPIjc3F1OnTkVNTY3xmLy8POTk5HR6XLp0CR9++CEGDBiAAQMG2GxDbW0t5s2bh7/85S9dtlWtVqOhocHsIZbMxBsD5y/XGypVnvsPZphLq7K2xTjlg+X8Wo6QSCRmY7nsBSlTlpNq2vsBaVlh62qqBbMB8jaOs3dMV7PMR9gYE2ZaoZKahSnTMVkm17AS4MKsVM1kFuc1PZ+9tXl1OvPgFcoD8wencUkjCm7fvzjN/kHkUX79q920adM6dROa+v3vf4/Fixdj4cKFAID169dj69ateOONN7Bs2TIAgFKptPn6vXv34t1338XmzZvR1NSE9vZ2xMXFYcWKFQCEYDVr1iwsW7YMN910U5dtXbVqFVauXOnkO/QOw3QNNQ1qXK4XKmHpCZ6rhBnGcrW0C3cmKuRSlyekjY+U46p+GQxbXYTWOHq3o4G9CUpNmY4LsxXCuqp0AYDp6TsNzLdxd6TcShULgNkUEaaVMLmVwGX6OkOQM32NTGJRCXOgO9Ls9X79a5t32asaEgW6YF8Rwx8F7N94W1sbysrKUFRUZNwmlUpRVFSEPXv2OHSOVatWobKyEmfPnsWaNWuwePFiYwDT6XRYsGABJk+ejPvuu8/uuZYvX476+nrjo7Ky0rU35gGGiUkv1rXgalMbAM9WwrpFWSxQbScAdcV0XJi9cV2mLLsjo+yEQFvza1ljr6vR2fNZ7rc1+alEYn3slel2rUlqMl1tyBCUTKtphnOYBi2ZVGIxI74D3ZE22kJEwefkS6yG+VLAhrCrV69Co9EgNdV8sGxqaiqqqqrcPv+uXbuwadMmbNmyBXl5ecjLy8Phw4dtHq9QKBAXF2f2EIthSR7DItQyqcTuPFrOiAw3XwTa1uzzjoiJcC2EmXZHhsukdqdOMJ/OoevAFulAJUzaRaXLktyibabPnf3NU6u98bW1AfO2ui6N2yxClN1KmFZnVtUL5YH59v6uiIJBKEzI7E/8ujvSlxYsWGD2fNy4cdCa/sQLIIbuyBPVQghLiAzzeAUjITIcVe3CeDN3Qpjp5KLRVubbssXWpKW2WK7L2JUwG1NCmNKY/EC2dn2NyWAry79787sVrZ9fa+MnvsZku9Ss61H407QSJreSwizHdNnrYpNILK4TwiGMKFSUP3cbclduF7sZISFgI29ycjJkMhmqq6vNtldXVyMtzXfrNfojw0LaV/R3LroyaN4e00qUeyHM+nqJ9phPhmr/dWZjr2SOBwlb59aYBHTLSpc9lncrWmMrhGm1pt2Rnc9jPgdY59dbXs5edUcikZhdx1p1LRhZm4CXhTAKFe58TyfnBOy31PDwcOTn56OkpMS4TavVoqSkBGPHjhWxZeKz/A9kOYbLE0yrVrZmn3dEpI0leeyxNdeWzeNNwpS9yGRabbJZCTMpkjpbZTStLNl6qa27Fs3GhFnrjrQxiP/G9SwrYV2TwDy4sRJGFBpeujtH7CaEBL8OYU1NTVAqlcY7HCsqKqBUKnH+/HkAQHFxMTZs2IA333wTx44dw4MPPgiVSmW8WzJUWQ6U90YlzGwR6nDXQ5itpXrsMR1L5ci0Cfa6IE2ZBh1bXZ32BrR3lVVkNgbgO3J+W9NFSIxjwjrv76rL0d7fnGV3ZChPUcExYRRKflrYS+wmhAS/HhN24MABTJo0yfi8uLgYADB//nxs3LgRc+fOxZUrV7BixQpUVVUhLy8P27Zt6zRYP9RYDnBP8HIlzJluREumISzCqUqYc1NiOLPmoWkVylaVy15FSNJFvJHaCFK22mDzGqYD5q1MR+FI1creIRJIzM4TuhGMiMjz/LoSNnHiROh0uk6PjRs3Go955JFHcO7cOajVauzbtw+FhYXiNdhPWM6h5Y3+fdNuRFfnCAMslv9xsRLmcQ6UPOyNjeoq3JjusxXybI0Js3VaQ0XNWjDrqs+xq7BoOF8oFr+emzmk07YJA7qL0BIi8Xz960n2DyK3+HUII9dEhMnMQoqj6zE6w/SczlSwLNlbg9EWmQPjqmyxVxVzZIyXp8ZGuVUJMwlQhlDoSJXN7Bx2DpFKJE5VEYPFPaMyzcbEfPbLWzAkgzPmU2jp2c1zaw6TdQxhQcq0SzLCCyEsKtxT3ZG2F7r2GjsBx5HMYS+odbXfcgZ7q6+3eV7r27vsjuyyKudIJSz0QhgAJJp04/dPjRWxJUQUrBjCgpTpFBL2ZpN3hae6I+VdrLHoLfaKTI5UkOwd0tVu8+5I+8eYn7frMWqm7XKoO9KB9xGqE7RyHD4RsOXhm8VuQlBjCAtSpl2EkV6ohJlOMupOJcw08Dg72N7A2bvW7N3Z6Ejlx+7A/K6qTyZf2wp8Nl9vY7vU2pgwRwbm2z3CsdBIRMEpLzNB7CYENYawIGUajNyZQsKWMJPw4E4lzHRxan9ZPNahuwrt7XewC9DWtZztAjSEObNz6/86u4qczocqpjAiIk/xj5965HGm6xlGeqE7MszJyVJtMZ3h3dmZ513li24me3cdGth6y87+TRjO4/TAfAeuxEoYEZF3MIQFKdPqVJSXuyPdGctlGrxcvQvP3vqH3jifO1c0nX7C5sB4Bwbsm7bTcB6zrk4PJSZHAyURBafSJzlVhbcwhAWpCLl37zoMN10o2om1GC2ZDsx3NTQ4PybM/fPZG1fWVZBz5PyO/E1YO4/ZxKr6r+211W5bmMGIQlpWEqeq8BaGsCAV4eXuSE+EJ+E8nccweZsnKmf2zmCyvnfnfQ6EIkcKZNbmEjPd70hh0d7fhQ4cBUZE5C0MYUHKdGB+mBuVKltMuyPdWU8wTOp/lTBPnKOroOXI9W0NzDftGrQX5jw1v5ezC5QTUeh6YsoAsZsQUPx67UhynemdhnInFq92lGmwcyeEyfxwcWhHMprd7sgudjtSifPE34RHspOOlTAiEirr9lby+OChmzAiq5tvGhQkWAkLUt6+6zDcU5Uws+5IH90d6YlKmJ39XVWpnF2c2/y6jjfekQH1Do1PYwojCnnvPjDW7jEMYM5jCAtSci9XmOQeCmGm53G1+8zdgeedT+jINbve7253pCdIPPS/27Q70ldtJyL/MqpX1wHrqemDfNSS4MIQFqRMw403KmFyD3VHmi2z46OSi73LODZFhf0B7bY4NDDfA52AzpyhoHciAOCO4elm23lXFBEB9nsqHrilr49aElw4JixImf5/8caYMJmTk4LaIrUyw7u3eSLr2c1RblaMPHEHpyMD6odkxAEANtw3CjuOVWNqThoAYWzHn788g6emD3a7HUREZB1DWJAyW0PQC5Uw0/DkqUqbq+10Nq7Y6/Z0bJ4wOwf4wTiqrpqw9dFx2HumFj8anQUAiI8Kww/yexr3j8jqhvX35Xu5hUREoY3dkUHKtDvLG92RplUrd6ZCMFtmx0dTVHhi6gZvD43y5NiracOELsa0uAjjtqEZ8fjZuN5+c0cqEQWuHxdkit2EgMVKWJAy7c7yfiXM9SxvFuZcbKezL7M/Jsx9XV3Cm0PfTM9teB8js7qh5IkJSI+PsPoaIiJ3PHvHELGbELBYCQsB3qiEyaSeGcvliUqYs5OJ2jvakbst7f2VdtUmh6aOsHuEdfGRYcavTacR6ds9BlHh7v/OlZXIgfpEoereMVlWt3vie0uo4t9ckDL9Qe/PlTCzBaddbKez2c0TM8D769xZsRFheO/nYyGXScwm7HXXzqUT0aTuQPdYhcfO6e/6pcSI3QQiv1LYOwlv7z0vdjOCCkNYCPDGsjOmecmdSpjE7O5IV7sjfZ+IPDGFRFccqcbZaoFhuglPyk6O9vg5/d2A1FhsXDgaaezGJQIA3NwvWewmBB12R5JLJJ4aE+aBecI8ncEcCXX2DvFFLJwxPB2ZiZG4x+SuRvKsiQNTMCgtTuxmEPmFxOhwsZsQdFgJI7e5M8mqRIR5wjzBnZDlyF+XI9XLqHA5Sp+cxAW2iYgCVAD92CN/YtpdJpO5EcJMvna5Euby1d3gJ8GHAYyIxBTmxvd/YggjD/DUuH8xxnZ5i6ffyg9GCl2OSyb39+yJiYjc8Ju7csRuQkBjd2SQ8sSyN45yJzyZvjSYQpinrblnOJ69YzASojgmg4j8Bwfru4eVsCDlyRnX7XFnCgyzdvoogzly56EDJ3H5pa68TYlEwgBGRBRkGMKClA8zmMcqWP6ygo4n3o63p7AgIvIHPbtFit2EgMYQFqS0Xi6Fmd3V6EbeMA08rg4y9/Q7deivzk5bXQ1yv7p9IMLlUqy8c6hrJyAi8iHeHOQejgkLUlFhvvun9dR/Qn+phDnESyH3oYn98MD4PpDL+PsREVGwYwgLUovGZWPX6au4Y3i62E1xmK8G5vuiq7arjGbvbTKAERGFBoYwAM3NzRg8eDDuuecerFmzxrg9OzsbcXFxkEql6NatG7744gsRW+kcwxqC3sKFnImIiNzDEAbgpZdewpgxY6zu2717N2JiuJCvpcTocGx7fLxPuz19hUMciIjIF0K+3+PkyZM4fvw4pk2bJnZTAs6gtDhkJblXEUuIvDHtgjtTXTjFTn+kR2aw6OIiPxyViW5RYZjDNR+JiEKaX4ew0tJSzJw5ExkZGZBIJNiyZUunY9atW4fs7GxERESgsLAQ+/fvd+oaS5cuxapVq6zuk0gkmDBhAkaPHo1//vOfrrwFsiM+Kgz/+FkB3n1gDMICaCyUOzktISocB56ZgjX35HqsPUREvjAknQvae5Jf9yWpVCrk5uZi0aJFmD17dqf9mzZtQnFxMdavX4/CwkKsXbsWU6dOxYkTJ5CSkgIAyMvLQ0dHR6fXbt++Hd988w0GDBiAAQMGYPfu3Z2O+frrr9GjRw9cvnwZRUVFGDZsGIYPH+75Nxrixvfv7tbrPX2joi+6I31W9SMi8qAf5PfE0Y+Oit2MoOHXIWzatGlddhP+/ve/x+LFi7Fw4UIAwPr167F161a88cYbWLZsGQBAqVTafP3evXvx7rvvYvPmzWhqakJ7ezvi4uKwYsUKAECPHj0AAOnp6Zg+fToOHjxoM4Sp1Wqo1Wrj84aGBqfeK7kuISrMqeM9kdkYoYgoFPH3R88KnP4fC21tbSgrK0NRUZFxm1QqRVFREfbs2ePQOVatWoXKykqcPXsWa9asweLFi40BTKVSobGxEQDQ1NSEzz//HEOH2p5Ac9WqVYiPjzc+MjMz3Xh35Ii/zR+FvMwErJ2b59TrPPE9xF6Q8+WyUUREvhIRJhO7CUElYEPY1atXodFokJqaarY9NTUVVVVVbp+/uroa48aNQ25uLsaMGYN58+Zh9OjRNo9fvnw56uvrjY/Kykq320Bdu3VwKrY8fDP6dPfs3asMUERE1gXS3JOBwK+7I31pwYIFZs/79OmD8vJyh1+vUCigUCg83CryCh+U0ycPTsHJmiakxPIzQUTBI1wesLUbvxSwISw5ORkymQzV1dVm26urq5GWliZSqygYeGJg/i+LBqBf9xjcMsC9mw6IiPyJhCNiPSpgI214eDjy8/NRUlJi3KbValFSUoKxY703UzyRIyLCZLhnVCZS4yLEbgoRkcdwMmvP8utKWFNTE06dOmV8XlFRAaVSicTERGRlZaG4uBjz58/HqFGjUFBQgLVr10KlUhnvliQylZUYhfO1zZg61P1KKceNERGRu/w6hB04cACTJk0yPi8uLgYAzJ8/Hxs3bsTcuXNx5coVrFixAlVVVcjLy8O2bds6DdYnAoD3H7oJu05dxe057K4mInIFC2Ge5dchbOLEidDZKTk88sgjeOSRR3zUIgpkyTEK3JXXwyPnYkmeiEKRhN/8PCpgx4QRiYndkUQUihjBPIshjIiIiEgEDGFERETkEPZGehZDGBERETmEY8I8iyGMiIiInLbgpmyxmxDwGMKIXKCzu4Q3EVFwG5oRJ3YTAh5DGJEFLstBRES+wBBGZOHFu3OQGB2OFXcMEbspREQUxPx6slYiMQxIjUXZM0UcgEpERF7FShiRFQxgRETkbQxhRC64Y3gGAKB3crTILSEiokDF7kgiF9w/rjcGpMZgZFY3sZtCREQBiiGMyAVymRSTB6WK3QwiItFw2Ib72B1JREREJAKGMCIiIiIRMIQRERERiYAhjIiIiEgEDGFEREREImAIIyIiIocVDU5BbIQctw3lHeLu4hQVRERE5LAN80ZBo9VBLmMdx10MYUREROQwiUQCuYxzhHkCYywRERGRCBjCiIiIiETAEEZEREQkAoYwIiIiIhEwhBERERGJgCGMiIiISAQMYUREREQiYAgjIiIiEgFDGBEREZEIGMKIiIiIRMAQRkRERCQChjAiIiIiETCEEREREYlALnYDgpVOpwMANDQ0iNwSIiIicpTh57bh57g3MYR5ybVr1wAAmZmZIreEiIiInHXt2jXEx8d79RoMYV6SmJgIADh//rzX/xG9afTo0fjmm28C/pruntOV1zvzGkePtXdcV/sbGhqQmZmJyspKxMXFOdQufxUMn0sxPpPOvs6RY905hp9J/7smv1cC9fX1yMrKMv4c9yaGMC+RSoXhdvHx8QH9zUUmk/m8/d64prvndOX1zrzG0WPtHefIeeLi4gL6MwkEx+dSjM+ks69z5FhPHMPPpP9ck98rbzD8HPcmDsynLj388MNBcU13z+nK6515jaPH2jtOjH8vMQTD51KMz6Szr3PkWE8dE+iC4TPpiXPye6VzJDpfjDwLQQ0NDYiPj0d9fX3A/4ZHwYGfSfI3/EySP/Ll55KVMC9RKBR47rnnoFAoxG4KEQB+Jsn/8DNJ/siXn0tWwoiIiIhEwEoYERERkQgYwoiIiIhEwBBGREREJAKGMCIiIiIRMIQRERERiYAhzE80NzejV69eWLp0qdhNoRBXV1eHUaNGIS8vDzk5OdiwYYPYTSJCZWUlJk6ciCFDhmD48OHYvHmz2E0iwt13341u3bphzpw5Lr2eU1T4iaeffhqnTp1CZmYm1qxZI3ZzKIRpNBqo1WpERUVBpVIhJycHBw4cQFJSkthNoxB2+fJlVFdXIy8vD1VVVcjPz8f333+P6OhosZtGIWznzp1obGzEm2++iX//+99Ov56VMD9w8uRJHD9+HNOmTRO7KUSQyWSIiooCAKjVauh0OvB3NRJbeno68vLyAABpaWlITk5GbW2tuI2ikDdx4kTExsa6/HqGMDtKS0sxc+ZMZGRkQCKRYMuWLZ2OWbduHbKzsxEREYHCwkLs37/fqWssXboUq1at8lCLKdj54jNZV1eH3Nxc9OzZE08++SSSk5M91HoKVr74XBqUlZVBo9EgMzPTzVZTMPPlZ9JVDGF2qFQq5ObmYt26dVb3b9q0CcXFxXjuuedw8OBB5ObmYurUqaipqTEeYxhbY/m4dOkSPvzwQwwYMAADBgzw1VuiAOftzyQAJCQkoLy8HBUVFXjnnXdQXV3tk/dGgcsXn0sAqK2txbx58/CXv/zF6++JApuvPpNu0ZHDAOg++OADs20FBQW6hx9+2Phco9HoMjIydKtWrXLonMuWLdP17NlT16tXL11SUpIuLi5Ot3LlSk82m4KYNz6Tlh588EHd5s2b3WkmhRhvfS5bW1t148eP17311lueaiqFCG9+r/ziiy90P/jBD1xqFythbmhra0NZWRmKioqM26RSKYqKirBnzx6HzrFq1SpUVlbi7NmzWLNmDRYvXowVK1Z4q8kU5DzxmayurkZjYyMAoL6+HqWlpRg4cKBX2kuhwROfS51OhwULFmDy5Mm47777vNVUChGe+Ex6AkOYG65evQqNRoPU1FSz7ampqaiqqhKpVRTKPPGZPHfuHMaPH4/c3FyMHz8eS5YswbBhw7zRXAoRnvhc7tq1C5s2bcKWLVuQl5eHvLw8HD582BvNpRDgqZ/fRUVFuOeee/Dxxx+jZ8+eTgc4uVNHk1ctWLBA7CYQoaCgAEqlUuxmEJkZN24ctFqt2M0gMrNjxw63Xs9KmBuSk5Mhk8k6DVqurq5GWlqaSK2iUMbPJPkjfi7J3/jLZ5IhzA3h4eHIz89HSUmJcZtWq0VJSQnGjh0rYssoVPEzSf6In0vyN/7ymWR3pB1NTU04deqU8XlFRQWUSiUSExORlZWF4uJizJ8/H6NGjUJBQQHWrl0LlUqFhQsXithqCmb8TJI/4ueS/E1AfCZduqcyhHzxxRc6AJ0e8+fPNx7zyiuv6LKysnTh4eG6goIC3d69e8VrMAU9fibJH/FzSf4mED6TXDuSiIiISAQcE0ZEREQkAoYwIiIiIhEwhBERERGJgCGMiIiISAQMYUREREQiYAgjIiIiEgFDGBEREZEIGMKIiIiIRMAQRkRERCQChjAiIiIiETCEEVFIeuWVV9CrVy/I5XIsXbrUbN/EiRMhkUggkUigVCo9et0FCxYYz71lyxaPnpuIAgtDGBGFnPLychQXF+P1119HZWUlXnjhhU7HLF68GJcvX0ZOTg4AITzNmjWr03E7d+6ERCJBXV2dQ9f+4x//iMuXL7vTfCIKEnKxG0BE5GsfffQRCgoKMH36dJvHREVFIS0tzePXjo+PR3x8vMfPS0SBh5UwIgop/fr1wzPPPIPdu3dDIpFg3rx5Hjv32bNnjV2Npo+JEyd67BpEFDxYCSOikLJ7926MHTsWDz74IO69917ExMR47NyZmZlmXY1VVVUoKirCLbfc4rFrEFHwYAgjopASExODs2fPYty4cU53N3700UedQptGozF+LZPJjOdsbW3FrFmzMHbsWDz//PNut5uIgg9DGBGFlEOHDgEAhg0b5vRrJ02ahNdff91s2759+3Dvvfd2OnbRokVobGzEZ599BqmUIz+IqDOGMCIKKUqlEv369UN0dLTTr42Ojka/fv3Mtl24cKHTcS+++CI+/fRT7N+/H7GxsS63lYiCG0MYEYUUpVKJ3Nxcr53/P//5D1544QV88skn6Nu3r9euQ0SBjzVyIgopSqUSeXl5Xjn3d999h3nz5uHXv/41hg4diqqqKlRVVaG2ttYr1yOiwMYQRkQhQ6vV4vDhw16rhB04cADNzc148cUXkZ6ebnzMnj3bK9cjosDG7kgiChlSqRQqlcql127cuNHq9okTJ0Kn0wEQZtVfsGCBi60jolDDShgRkRWvvfYaYmJicPjwYY+e9xe/+IVH5yYjosAl0Rl+hSMiIgDAxYsX0dLSAgDIyspCeHi4x85dU1ODhoYGAEB6erpLd2kSUXBgCCMiIiISAbsjiYiIiETAEEZEREQkAoYwIiIiIhEwhBERERGJgCGMiIiISAQMYUREREQiYAgjIiIiEgFDGBEREZEIGMKIiIiIRPD/AXWxajinjiPDAAAAAElFTkSuQmCC", "text/plain": [ "